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J .  Phys. A: Math. Gen. 21 (1988) 1173-1190. Printed in the U K  

Random matrix theory in semiclassical quantum mechanics of 
chaotic systems 

Michael Wilkinson 
Department of Physics and Applied Physics, John Anderson Building, University of 
Strathclyde, Glasgow G4 ONG, UK 

Received 1 June 1987 

Abstract. The statistical properties of the spectrum of systems which have a chaotic classical 
limit have been found to be similar to those of random matrix ensembles. This paper will 
explain this correspondence, including the fact that long-ranged spectral statistics show 
deviations from the results of random matrix theory. 

The method depends on the ambiguity of quantisation of a given classical system: 
although the energy levels depend on the particular quantisation used, the spectral statistics 
are assumed to depend only on the classical motion. The ambiguity of quantisation can 
be represented by a small perturbation acting on the Hamiltonian. This perturbation 
executes a random walk, which causes its matrix elements to undergo a random walk. If 
the matrix elements are completely uncorrelated, the spectral statistics are those of random 
matrix theory. In the case of classically chaotic systems, the matrix elements are constrained 
by sum rules related to classical periodic orbits. This leads to deviations of the long-ranged 
spectral statistics from the predictions of random matrix theory. 

1. Introduction 

There is now a great deal of evidence that the statistical properties of the semiclassical 
spectrum of systems with a chaotic classical limit (K systems) are similar to those of 
random matrix ensembles. The evidence for this correspondence is discussed by Berry 
(1983) and Bohigas et a1 (1984). When there are classical constants of motion, the 
spectral statistics are very different. The case of completely integrable motion in 
particular is thoroughly understood (Berry and Tabor l976,1977a, b). The correspon- 
dence between the spectral statistics of classically chaotic systems and those of random 
matrices is not complete. It is known that the short-ranged spectral statistics, those 
depending only on energy levels separated by a few multiples of the mean level spacing, 
show excellent agreement with random matrix theory. Long-ranged spectral statistics, 
depending on energy levels separated by o( A /  T), where T is some time characterising 
the classical motion, show deviations from the predictions of random matrix theory 
(Berry 1985). 

The deviations from the results of random matrix theory exhibited by long-ranged 
statistics are, in principle, fully understood. These statistics depend on the smoothed 
density of states, for which a semiclassical theory, due to Gutzwiller (1967, 1969, 1970, 
1971, 1980) and Balian and Bloch (1972, 1974) already exists, relating fluctuations in 
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1174 M Wilkinson 

the smoothed density of states to periodic orbits of the classical motion. The correspon- 
dence between the short-ranged spectral statistics and the results of random matrix 
theory has not been fully explained. In an important paper, Hannay and Ozorio de 
Almeida (1984) established a useful sum rule for the periodic orbit corrections to the 
smoothed density of states, and used this result to calculate the tail of the two-level 
correlation function. This work has been extended by Berry (1985), who used their 
result to calculate the A3 statistic (Dyson and Mehta 1963). Pechukas (1983) proposed 
a theory which attempts a general explanation of the correspondence with random 
matrix theory, but this theory contains assumptions which are hard to justify and does 
not explain the deviations exhibited by the long-ranged statistics. 

This paper presents a new theory which explains both the correspondence of the 
short-ranged statistics with random matrix theory, and the deviations shown by long- 
ranged statistics. It is based on two key ideas. Firstly, the theory relies on the fact 
that quantisation (assigning a Hermitian operator to a given classical system) is 
aAmbiguous. This ambiguity of quantisation can be represented by a small perturbation 
A added to the Hamiltonian Ho. This perturbation is of size o ( h 2 ) .  This should be 
compared with the mean level spacing, which is o ( f i d )  for a system of d degrees of 
freedom. When d 3 2 (which is the case for all chaotic systems with a time-independent 
Hamiltonian) this perturbation can be large enough to shift energy levels by many 
times their mean separation. The energy levels themselves are not determined by the 
classical motion, but for almost all choices of quantisation the spectral statistics depend 
only on the classical motion. Often (e.g. when the Hamiltonian is of the form H = +p2  + 
V) there is a particular quantisation which is physically correct. It is assumed that 
the statistics of this preferred quantisation are typical. Numerical evidence suggests 
that this assumption is usually correct, but the hyperbolic map of a torus appears to 
be one example where the physically preferred quantisation (Hannay and Berry 1980) 
is not typical. 

The second key idea is to make the perturbation a execute a random walk. This 
causes its matrix elements A,,,,, to undergo a random walk. This method was used by 
Dyson (1962b) to rederive many of the results of random matrix theory. In the case 
treated by Dyson the matrix elements are completely uncorrelated. In the problem 
considered here, the matrix elements are locally uncorrelated, but collectively they are 
constrained by a semiclassical sum rule related to classical periodic orbits. This explains 
why the long-ranged statistics differ from the results of random matrix theory. 

The ambiguity of quantisation is discussed in greater detail in appendix 1, where 
it is shown that this ambiguity can be represented by a small perturbation of the 
Hamiltonian. Section 2 discusses the effect of making this perturbation execute a 
random walk in function space. If there are no constants of motion, the matrix elements 
of this perturbation (in a basis of eigenstates of the system) undergo uncorrelated 
random walks, and the resulting motion of the energy levels is governed by Dyson’s 
Brownian motion model. Section 3 describes three important sum rules, which relate 
matrix elements of the perturbation to properties of the classical motion. It is shown 
that, although the diagonal matrix elements are locally uncorrelated, they are collec- 
tively constrained by a sum rule related to classical periodic orbits. Section 4 discusses 
the implications of this result, which explains the deviations from the spectral statistics 
of the usual random matrix models. The theory does not apply if the perturbation 
does not destroy any constants of motion of the Hamiltonian; § 5 explains why this 
excludes classically integrable systems. Finally 5 6 is a summary and conclusion. 
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2. A Brownian motion model for spectral statistics 

In appendix 1 it is demonstrated that the ambiguity involved in quantising a classical 
Hamiltonian H ( q ,  p )  can be represented by a small perturbation A(q, p )  added to the 
Hamiltonian. If the system has time reversal symmetry, the perturbation should respect 
this symmetry, but apart from this constraint A(q,  p )  can be regarded as an arbitrary 
perturbation. The perturbation is large enough to shift the energy levels significantly, 
but the statistical properties of the spectrum should be the same for almost all 
quantisations. A convenient way to calculate these statistical properties is to make the 
perturbation undergo a random walk. This idea was used by Dyson (1962b) to derive 
a statistical model for the spectrum in which mutually repelling particles (energy levels) 
embedded in a viscous medium undergo Brownian motion. This section will discuss 
Dyson’s Brownian motion model in the context of semiclassical quantum mechanics. 

The perturbation A(q, p )  depends on a fictitious time variable r, and A(T)  executes 
a random walk. This random walk would be realised by expanding A(q, p ;  r) in a 
very large basis set 

and making the coefficients Ci(r)  undergo independent random walks, so that 

where ( x )  denotes the ensemble average of x. The basis set should be chosen so that 
any function which does not vary faster than some very small length scale T~ can be 
reproduced by the expansion (2.1), but all of the basis functions ai should be analytic. 
Note that a typical function drawn from the ensemble will be a rapidly oscillating 
function with fine detail on length scales down to T ~ .  

There is a quantum perturbation a corresponding to the classical perturbation 
A(q ,p ) .  Consider the matrix elements A,, =(nla lm) ,  where In), Im) are eigenstates 
of some initial guantisation go of H ( q ,  p ) .  We assume that a does not respect any 
symmetries of Ho. In the case of a chaotic system this assumption is justified, but if 
H ( q ,  p )  is integrable the assumption is false; thz reasons for this are discussed in 9 5 .  
Provided a does not respect any symmetry of Ho, the matrix elements A,, are those 
of a random operator, A, in an arbitrary basis. Random matrix theory (Porter 1965) 
shows that the matrix elements are Gaussian distributed and uncorrelated. The mean 
and variance depend on whether the matrix element is diagonal or off-diagonal: 

where ( X ) ’  denotes the average of X over the matrix. The ensemble average off i szero: 

( f a )  = 0 (2.4) 

and the constant P depends on whether a has time reversal symmetry (GOE case) or 
not (CUE case) (see Porter (1965) for discussion of Gaussian orthogonal and Gaussian 
unitary ensembles): 

G U E  

P = { ;  GO€. 
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Note that these conclusions do not depend on any assumptions about the nature of 
the eigenstates In! and Im), which are eigenstates of fro, and have nothing to do with 
the perturbation A. Because of (2.2), the variance U* increases linearly with the fictitious 
time r 

U2 = K r .  (2.6) 

There are minor corrections to this picture which arise because the perturbation d has 
an analytic classical limit A(q, p ) .  Firstly, the (locally averaged) variance u2 is not 
constant, but depends on the energies E,, E,,, of the states In), Im); similarlyf, depends 
on E,,,. Secondly, although the diagonal matrix elements are locally uncorrelated, they 
are collectively constrained by a sum rule. Both of these corrections will be discussed 
in detail in 8 3. 

Now consider the effect of the perturbation d on an energy level E,. The shift in 
the energy level due to the perturbation is 

The ensemble average and variance of this energy shift are, respectively 

1 
- K 6 r  c ~ 

m z n  En-Em m + n  En-Em 
1 

( S E , ) = ( f ) + u 2  -- 

and 

( ( S E ,  -fa2) = ( ( A n n  -fa2) = Pa2  = P K a r  (2.9) 
to lowest order in S r .  Note that, because d executes a random walk, both the mean 
and variance contain contributions of size o(SI'). Equations (2.8), (2.9) have an 
interesting physical interpretation. Equation (2.8) describes particles with positions 
E ,  moving in a viscous medium, where the force F, is equal to the viscosity U times 
the velocity 

u(SE,)  = F,Sr (2.10) 

and equation (2.9) can be interpreted as a Brownian motion of the particles, with 
diffusion constant D:  

( ( S E ,  -f,)') = Dar. (2.11) 

The mutually repulsive force F, and diffusion constant D are given by 

(2.12) 

Dyson (1962b) showed that the equilibrium distribution of the energies E ,  resulting 
from this motion has the same statistics as the energy level distribution of random 
matrix theory. 

3. Sum rules for matrix elements 

In Q 2 the effect of the perturbation a representing the ambiguity of qua?tisation was 
discussed. Random matrix theory shows that the matrix elements of A are locally 
uncorrelated and Gaussian distributed. The only constraints on d are that it has an 
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analytic (but usually rapidly varying) classical limit A(q,  p ) ,  and that if H ( q ,  p )  has 
time reversal symmetry, A respects this symmetry. In this section it will be show? how 
these constraints lead to three important sum rules for the matrix elements of A. 

The first sum rule involves the off-diagonal matrix elements A,,, and gives the 
variance of their distribution, c2, in terms of classical quantities. 

The second sum rule concerns the diagonal matrix elements A,,, and gives the 
average value f of A,,, over a short energy interval of length E, for a fixed perturbation 
A (this should not be confused with the ensemble average, which is zero). This average 
is expressed as a sum of which each term corresponds to a classical periodic orbit. 
This sum rule shows that the diagonal matrix elements A,, are not completely uncorre- 
lated; large numbers of matrix elements are collectively constrained by this sum rule. 
The important consequences of this are discussed in 0 4. 

A third sum rule is calculated as a check on the consistency of the results. If the 
diagonal matrix elements are locally uncorrelated, as predicted by random matrix 
theory, then the variance of the average f should satisfy ( f * ) ~  E - '  in the limit E + 0. 
The sum rule of Hannay and Ozorio de Almeida (1984) is adapted to show that the 
periodic orbit sum for f does satisfy this condition. 

3.1. Of-diagonal matrix elements 

Consider the sum 

S ( E ,  L E ) =  IAnm12S,(E-f(En+Em))S, ' (AE-(En-Em)) (3.1) 
nm 

where S,(x) is a Dirac delta function smeared over a range E 

The sum S ( E ,  AE) can be related to the classical correlation function of A(q ,  p )  under 
the motion generated by the Hamiltonian H ( q ,  p )  (Wilkinson 1987b). This correlation 
function is defined by 

C A ( E ,  t ) =  d a  A ( a ) A ( a r ) S ( E - H ( a ) )  (3.3) 1 
where a is a phase space point (4, p ) ,  and a, is the point obtained by evolving LY for 
time t under the Hamiltonian H( a ). Provided that E and E '  are much greater than 
h / r , ,  where r1 is the period of the shortest periodic orbit of H ( a ) ,  the sum S ( E ,  AE) 
is given by 

When E h / r l ,  there are corrections to ( 3 . 4 )  which depend on properties of the periodic 
orbits (Wilkinson 1987b). These corrections are of higher order in A, and do not have 
any significant effect on the spectral statistics in the semiclassical limit. The variance 
of the matrix elements is given by 

( 3 . 5 )  

where n ( E )  is the smoothed density of states. 
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Typically, the perturbation A ( a )  is a rapidly varying function, so that its correlation 
function will decay to zero in a very short time T ~ ,  independent of the dynamics of 
H( a ) .  Because a’ depends on the Fourier transform of this correlation function (3.4), 
the variance u2 is independent of the energy difference AE, for A E  less than some 
large value h/T0. This is consistent with the arguments of 0 2, showing that the matrix 
elements are distributed in accordance with random matrix theory. 

It will be useful to define the variance of A, (A’), and to define the decorrelation 
time T~ more precisely. These quantities are defined through the formulae 

d V  
d E  

C A ( E ,  O)=- (A2)  

dV 
dE 

dt  CA(E,  t )=- (A2)70  

(3.6) 

(3.7) 

where (dV/dE)  SE is the volume of an energy shell in phase space of thickness SE, i.e. 

%= 1 da 6 ( E  - H ( a ) ) .  

Using (3.4), (3 .5)  and the above definitions, we can write 

U==- ( A 2 ) T 0  

2.irhno 

where we have made use of the Weyl approximation (Berry 
density of states 

1 dV 
n , ( E )  =-- 

( 2 ~ h ) ~  dE’ 

3.2. Diagonal matrix elements 

Now consider the sum of diagonal matrix elements 

f ( E )  =c A,, S , ( E  - E n )  
n 

(3.9) 

1983) for the smoothed 

(3.10) 

(3.11) 

where & ( x )  has the same meaning as in (3.2). This sum is an average of A,, over a 
small range of energy, of length E.  An expression will be derived for f( E )  in the form 
of a sum over periodic orbits. This expression is analogous to Gutzwiller’? f o p u l a  
for the density of states (Gutzwiller 1967) and is equivalent to it if we set A = I (the 
identity operator) when f ( E )  = n ( E )  (the smoothed density of states). 

The sum f ( E )  can be written 

1 “  
2Vh -= f ( E )  =- 1 d t  exp(iEt/h) exp(-~*t~/2h’ )  Tr( 6 ( t ) A )  (3.12) 

where O ( t )  = exp(-ifit/h) is the evolution operator. It is helpful to consider the 
expression for the trace in (3.12) in a basis of coherent states la) 

(3.13) 
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whe!e the second equality holds in the semiclassical limit, h + 0. The matrix element 
(a lU( t ) la )  is very small except when the classical dynamics maps a into a nearby 
point after time t .  The function f( E )  can therefore be written as a sum over periodic 
trajectories in phase space 

(3.14) 

where the first term in the summation comes from contributions to (3.13) with t = 0 
and the j th  term comes from the j th  periodic orbit, with period ? ( E ) .  These periodic 
orbit contributions can be evaluated by standard methods (Berry 1983, Wilkinson 
1987b). The term & ( E )  is the average of A ( a )  over the energy shell 

(3.15) 

where the second equality defines A,. The periodic orbit terms are 

= .,A, exp(io;/ h )  

where q ( E )  is the classical action of 
number of focal points, y,, 

(3.16) 

the j th  orbit, plus a correction term for the 

(3.17) 

and A , ( E )  is the time-weighted average of A ( a )  evaluated on the j th  orbit at energy 
E. The amplitudes a , ( E )  depend on the stability of the periodic orbits and will not 
be discussed here; they can be determined by setting AJ = 1 and comparing with 
standard expressions for the density of states, n ( E ) ,  reviewed by Berry (1983). 

Combining equations (3.14)-(3.17), we have 

f ( ~ )  = Aono+C aJA, exp(ia,/fi) exp(-E2Tf/2h2). (3.18) 

The sum over periodic orbits j includes orbits traced backwards in time, for which 
U-, = -U,, so that the sum is real. Using the result 

I 

(3.19) 

we see that the periodic orbit corrections oscillate as a function of energy, with period 
h / T , .  In the neighbourhood of the energy Eo we can therefore write (3.19) as a sum 
of periodic terms 

f ( ~ ) = A o n o ( ~ o ) + C  a , ( ~ o ) A , ( ~ o )  exp(iu,(~o)/f i )  ~ x P ( - E ’ T , ~ / ~ )  exp(i(E - ~ 0 ) 7 ; / ~ ) .  
J 

(3.20) 

This expression is in the form of a Fourier expansion for f( E ) .  The Fourier transform 
f (  T )  of f ( E )  has a discrete spectrum, with frequencies proportional to 7,. The ampli- 
tudes are the product of four terms: an amplitude a, which characterises the stability 
of the perodic orbit, the time-weighted average AJ of A over the periodic orbit, a 
complex phase factor and a term which suppresses contributions from orbits with 
periods greater than h / E .  
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It may be helpful to contrast the treatment of the sum rules for the diagonal and 
off-diagonal matrix elements. In both cases, there is an average term, plus small 
oscillatory corrections related to periodic classical orbits. In  the case of the off-diagonal 
matrix elements the small periodic orbit corrections can be ignored. In the case of the 
diagonal sum rule, the average term describes a uniform shift of all the energy levels, 
without changing their relative positions, and the smaller periodic orbit terms are of 
crucial importance. For this reason, the periodic orbit terms were evaluated in this 
section, but not in § 3.1. 

The periodic orbit sum (3.20) is only valid for values of the energy resolution E 

greater than some minimum value E * (  h ) .  The reason is that the semiclassical approxi- 
mations used to derive the periodic orbit corrections are not valid in the limit T ~ + , C O  

with h fixed. If the periodic orbits are unstable, the semiclassical approximation is 
expected to break down for times greater than 

~ * - l / y l n ( S , / h )  (3.21) 

where y is the Lyapunov exponent of the orbit and So is some characteristic classical 
action of the system (Wilkinson 1987b). The corresponding minimum value of E is 
therefore 

(3.22) E *  = h / ~ *  = hy/ln(S,/h). 

3.3. A sum rule for  the spectral intensities 

The sum f( E ) ,  which is the mean value of Ann averaged over a short range of energy 
of length o ( E ) ,  has been evaluated semiclassically in terms of a sum over periodic 
orbits. We can also attempt to calculate f ( E )  using random matrix theory: the matrix 
elements A,, are predicted to be uncorrelated random variables, with variance pu2. 
The sum f( E )  is therefore a random variable, with variance 

((f-fo)’) = C ( ( A n n  -f0I2)S2,(E - E n )  
n 

, 

J, pu’n ,  - 
2.n E 

(3.23) 

provided &no >> 1, so that the sum can be approximated by an integral. This result must 
be compared with a calculation of the variance from the periodic orbit sum (3.20). It 
will be found that the two expressions agree when E<< h / T , ,  where T~ is the period of 
the shortest closed orbit, but that for E t h / T 1  the results diverge. This shows that the 
diagonal matrix elements are indeed locally uncorrelated, but that they are collectively 
constrained by the sum rule (3.20). 

From (3.20), the variance off is given by 

Terms corresponding to inequivalent orbits disappear from the sum, since in this case 
(&AJ,) = 0. The remaining terms are of two types. Terms combining an orbit of period 
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T~ with its reverse traced orbit, period - T ~ ,  give energy-independent contributions. 
Terms in which an orbit is paired with itself give contributions which oscillate as a 
function of energy; when many orbits are included in the sum these oscillatory terms 
combine incoherently, and give a negligible contribution. Considering only the energy- 
independent terms, we have 

(3.25) 

where the sum is now confined to positive time traversals of the periodic orbits. The 
factor P multiplying the sum is required because, when there is time reversal symmetry, 
orbits occur as equivalent pairs which doubles the number of terms for which (&Aj) 
is non-zero. 

The sum (3.25) must now be compared with the expression (3.23) derived from 
random matrix theory. The two expressions are clearly different when E >> h / . r , ,  since 
in this case (3.25) is exponentially small. When n i l < <  E < <  h / T l ,  many periodic orbits 
contribute to the sum in (3.25), and we require some information about the size of the 
amplitudes aj for long orbits. The necessary information is contained in a sum rule 
derived by Hannay and Ozorio de Almeida (1984). The sum rule states that, if aj are 
the amplitudes corresponding to unstable periodic orbits 

7, < T 

It follows that for small E ,  the sum (3.25) can be approximated by the integral 

- - 2p Joa d.r ~(iIf) exp( - E * T ~ /  h 2 ) .  
(2Vhl2 

The variance of Aj is (using 3.7) 

= ( A ~ ) T ~ / T ~  

(3.26) 

(3.27) 

(3.28) 

where the last equality uses an ergodic property, which only applies to long closed 
orbits. Substituting (3.28) into (3.27) and using (3.9), we find 

(3.29) 

for small E. This is in agreement with the prediction of random matrix theory (3.23). 

4. Discussion 

The results of 0 2 showed that the effect of the ambiguity of quantisation is equivalent 
to considering the energy levels as mutually repelling particles embedded in a viscous 
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medium (equations (2.10) and (2.12)), driven by an uncorrelated Brownian motion 
(equation (2.11)). Section 3 considered in detail the consequences of the fact that the 
perturbation A has an analytic classical limit A(q, p ) .  This leads to the important 
conclusion that, although the diagonal matrix elements representing the Brownian 
motion are locally uncorrelated, they satisfy the sum rule (3.20). In  the limit E + 0, 
the sum f ( E )  describes the spatial distribution of the random walk which drives the 
motion of the energy level gas. The sum rule (3.20) shows that the spectrum T ( T )  of 
this random walk only contains a discrete set of frequencies 

f ( E )  = [ dTJ(7) exp[i(E - E0)7/h] 

(4.1) 

This should be contrasted with the uniform spectral intensity which would characterise 
a totally uncorrelated distribution (see figure 1). The results of 0 3.3 show that the 
spectral intensity agrees with the uncorrelated distribution for large values of T. 

Figure 1. ( a ) .  In random matrix theory, the diagonal matrix elements are completely 
uncorrelated, so that f ( E )  = xn A,$( E - E , )  resembles white noise, which has a uniform 
spectral density, ( I f ( ~ ) l ’ ) .  ( b )  In the case of a system with a chaotic classical limit, f ( ~ )  
is a sum of contributions from classical periodic orbits, with periods T~ The contributions 
from the long orbits sum to the same spectral density as random matrix theory at large T. 

Now consider the implications of the ambiguity of quantisation for the spectral 
siatistics. Initially, the Hamiltonian is quantised so that it is represented by an operator 
Ho. The smoothed density of states is given by the periodic orbit sum (Gutzwiller 1967) 

n ( E )  =c & ( E  -En)  
n 

=E a, exp[(i/fi)u,(~,)] exp[i(E - ~ , ) 7 , / f i ]  exp(-~*~,2/2fi’) 
J 

(4.2) 
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where the amplitudes a, are the same as those occurring in (3.20), and are determined 
to lowest order by tke stability properties of the classical periodic orbits. The effect 
of the perturbation A can be analysed in terms of its effect on the amplitudes al. This 
is done in appendix 2: it is shown that, provided the wavelength h / r ,  of the fluctuation 
is much greater than the mean level separation, a continuum approxiFation is valid 
and that the amplitudes aJ evolve independently. The perturbation A causes aJ to 
undergo Brownian motion with a diffusion constant proportional to a,’ 

2 T K  no 
ti 

( sa  5) = 0; sr = - 7,a;sr 

and the motion of the coordinate aJ is restrained by a linear restoring force 

7TKn 7 
(Sa1)= -- O J 

ti 

Equation (4.4) shows that the characteristic response time for the j th  mode is 

ti r .  =-. ’ TKnOrj 

(4.3) 

(4.4) 

(4.5) 

Note that this is longer for the long-wavelength modes (which have smaller classical 
perods, T]). 

The perturbation A is very small, of size o( t i’) .  This implies that the random walk 
should only be allowed to proceed for a short time r*. Even though the perturbation 
is very small, it can be large enough to shift the energy levels by many times their 
mean spacing, in which case 

A = c2 n i >> 1 .  (4.6) 

r* = A / K n i .  (4.7) 

Using (2.6), the time increment r* is given by 

If r*/rl >> 1, then the mode is able to come into thermodynamic equilibrium, 
whereas if T*/TJ<< 1 the mode is not significantly affected by the Brownian motion. 
Comparing (4.5) and (4.7) we find 

r*/T1 = ( r A / n o t i ) r J .  (4.8) 
Since A = o( t i z p d ) ,  and no = o( t i - ’ ) ) ,  this ratio is of order unity when 7 = o( t i - ’ ) .  This 
result shows that the long-wavelength modes are not affected by the ambiguity of 
quantisation, but the short-wavelength modes are brought into thermodynamic equili- 
brium. The results of random matrix theory are therefore valid for short ranges of 
energy, but not for long-ranged properties of the spectrum. 

5. The effect of symmetries 

In Q 2 it was assumed that the perturbation A does not respect any of the symmetries 
of the Hamiltonian go, except time reversal symmetry (if present). This section will 
clarify the meaning of this assumption, and show that it is justified for chaotic systems 
but no: in the case of integrable or quasi-integrable systems. 

If Ho has a symmetry, or constant of motion, represented by an operator k, then 

[fro, 81 = 0. (5.1) 
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The perturbation A respects this symmetry if there is a corresponding perturbation h 
of k, such that k remains a constant of motion: 

of if A is small 
[ r i ,+A,R+h]=O ( 5 . 2 )  

[A, k]+[ci,, &=o.  (5.3) 
Taking matrix elements of (5 .3) ,  we find 

AnmKm - AmnKn = BnmEm - BmnEn. (5.4) 
This result implies that when K ,  # K,, A,, + 0 as E,  - E ,  + 0, in which case the energy 
levels E,, E ,  do not show level repulsion. The model derived in 0 2 is therefore not 
valid when A respects a symmetry of fi0 (except time reversal symmetry which is not 
of the type represented by (5.1), in which there is a constant of motion). 

If the classical Hamiltonian corresponding t,o go is chaotic, then for almost all 
pertybations a will not respect any symmetry of Ho. This is because the only constraint 
on A is that it has an analytic classical limit, so that the only symmetry of fi0 which 

can respect is one which corresponds to a classical constant of motion K ( q ,  p ) .  By 
definition, a chaotic Hamiltonian has no such constant of motion. 

If the classical Hamiltonian does have a constant of motion K ( q ,  p ) ,  then there 
exist corresponding operators k which are approximate constants of motion; from 
(A1.5) we see that k can always satisfy 

but it is not usually possible to find an operator k such that [io, k ]  = 0 exactly 
(Hietarinta 1984). Equation (5.5) suggests that when a perturbation is applied which 
respects this symmetry, energy levels will be repelled when they have a separation 
A E  - o ( h 2 ) .  For systems with d degrees of freedom, the mean separation of energy 
is o( h d ) ,  so that when d 3 2, equation (5.5) does not in itself imply a breakdown of 
energy-level repulsion. 

If the constant of motion is such that the classical motion is confined to tori in 
phase space (as is the case for integrable or quasi-integrable systems) then the situation 
is rather more complex. There are two important points. First, if a perturbation is 
applied which respects this constant of motion, then numerical experiments (Wilkinson 
1987a) have shown that energy levels can approach to a minimum separation much 
smaller than the mean level separation. Theoretical arguments (Wilkinson 1986) show 
that in quasi-integrable systems this minimum separation is 

(5.6) 
where S is a constant and C has a power law dependence on h, and that for exactly 
integrable systems A E  can vanish in an even more singular manner as h + 0. The 
second important point is that, although the only constraint on the perturbation is 
that it has an analytic classical limit, the KAM theorem shows that all perturbations in 
this class preserve the constant of motion. Integrable or qu?si-integrable systems do 
not therefore satisfy the requirement that the perturbation A should not respect any 
symmetry of ri,. 

Systems which have a constant of motion, but where the motion does not occupy 
a torus in phase space are called pseudo-integrable (Richens and Berry 1981). Most 
rational-angled triangular billiards are examples of this type of motion. Unlike torus 
quantised systems, there does not appear to be any theoretical reason to expect the 
range of level repulsion to be less than o( h 2 ) ,  as predicted by ( 5 . 5 ) .  Numerical results 

[io, k ] = o ( h 2 )  ( 5 . 5 )  

A E  = c e-'/' 
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show a level spacing distribution similar to the Wigner distribution (Richens and Berry 
1981, Berry and Wilkinson 1984), in agreement with this prediction. Long-ranged 
spectral statistics are, however, expected to show deviations from the predictions of 
random matrix theory at much smaller energy ranges than chaotic systems. The reason 
is that the sum rule derived in Q 3.3 is only valid for systems with unstable periodic 
orbits. If the orbits are unstable, this sum rule shows that the random matrix model 
becomes correct for energy ranges a few times smaller than h / ~ ~ ,  where T~ is the period 
of the shortest periodic orbit. In pseudo-integrable systems, the periodic orbits are 
marginally stable and non-isolated, and in this case (3.26) is not valid, and the random 
matrix behaviour must be restricted to much smaller energy scales, where the terms 
in the periodic orbit sum corresponding to very long orbits are not meaningful. 

6. Summary and conclusion 

Random matrix theory suggests that any quantum mechanical system which has a large 
number of energy levels should have one of three universal types of spectral statistics, 
provided that it has no constants of motion (Porter 1965). These universality classes 
are the Gaussian orthogonal and Gaussian unitary ensembles, which have already 
been mentioned, and the less usual Gaussian symplectic ensemble (Dyson 1962a). 
Semiclassical systems with a chaotic classical limit have no obvious constants of motion 
(provided trivial geometrical symmetries are removed), and it might be expected that 
their spectra should have the properties of one of these ensembles. This is, however, 
at variance with the results of Gutzwiller (1967) and others, which show that the 
fluctuations in the density of states contain only a discrete spectrum of frequencies, 
corresponding to the periods of classical periodic orbits, instead of the continuous 
spectrum predicted by standard random matrix models. 

This paper has presented an analysis of this problem, which is based on the fact 
that the ambiguity of quantisation H ( q ,  p )  + I? can be represented by a perturbation 
d added to I?. This perturbation does not appear to satisfy any constraint, other than 
that it should have a classical limit A(q, p ) .  Applying this perturbation will therefore 
destroy any constants of motion which do not have a classical limit, so that only 
classical constants of motion can be preserved. If the system has a chaotic classical 
limit, there are no such constants of motion. If the system is integrable or quasi- 
integrable however, the KAM theorem shows that the perturbation does not destroy 
the constant of motion. Random matrix theory should therefore be applicable to 
classically chaotic systems but not to integrable or quasi-integrable ones. 

Following the work of Dyson (1962b), the effect of the perturbation A can be 
analysed in a physically transparent way by making the perturbation execute a random 
walk in function space. The shift of the energy levels is calculated using perturbation 
theory; because A undergoes a random walk both first-order and second-order terms 
are equally significant. These terms can be interpreted by regarding the energy levels 
E, as the positions of particles embedded in a viscous medium. The first-order 
perturbation represents diffusive motion, and the second-order term represents a 
repulsive force between particles. 

The fact that the perturbation A has a classical limit has important consequences. 
Although the diagonal matrix elements A,, are locally uncorrelated, they satisfy the 
sum rule (3.20), which shows that the diffusive motion is driven by a discrete spectrum 
of frequencies, corresponding to the periods of classical periodic orbits. The classical 
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sum rule of Hannay and Ozorio de Almeida (1984) can be used to verify that if the 
periodic orbits are unstable, the diagonal matrix elements are locally uncorrelated. 

The configuration of the energy level gas can be Fourier analysed; the density 
fluctuations have a discrete spectrum, with frequencies equal to r j /  h, where rj is the 
period of the j th  classical periodic orbit. The random perturbation A causes the 
amplitudes aj of these density fluctuations to undergo diffusive motion. This diffusive 
motion is characterised by a time constant r,, which is inversely proportional to the 
period q. Since the perturbation A is small, of size o ( h 2 ) ,  the diffusive motion does 
not act for long enough to alter the amplitudes of the long-wavelength fluctuations, 
which have a long relaxation time. The short-wavelength fluctuations, corresponding 
to long periods 5, have a short relaxation time, and their amplitudes cyj are strongly 
affected by the diffusive motion, and come into thermodynamic equilibrium. Short- 
ranged spectral statistics therefore correspond to the predictions of random matrix 
theory, whilst long-ranged fluctuations are non-universal and their amplitudes aj can 
be calculated explicitly. 

Pseudo-integrable systems are still not completely understood. Although they have 
a classical constant of motion, the corresponding quantum operator is not an exact 
constant of motion, and energy level repulsion is not suppressed. These systems do 
not have unstable periodic orbits, however, and the sum rule of Hannay and Ozorio 
de Almeida does not predict a correspondence with random matrix theory. It seems 
the random matrix picture is only correct for very short energy ranges, where the 
periodic orbit corrections are not meaningful. 
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Appendix 1. 

There is in general no unique way of assigning a Hermitian operator fi to a classical 
Hamiltonian function H ( q ,  p) .  It will be shown that this ambiguity can be represented 
by a small perturbation of size o ( h 2 ) .  

There is more than one way of approaching this problem. Let us fix the correspon- 
dence between classical functions and quantym operators by using the Weyl quantisa- 
tion to go from A(q,p) to the operator A. The Weyl quantisation (Weyl 1927, 
Groenewold 1946) will be described below. We then consider the effect of applying 
a classical canonical transformation to A(q, p).  If we quantise the transformed function, 
A’(4, p),  using the Weyl rule, we obtain an operator A’ which is not unitarily equivalent 
to A but which differs from it by a term of size o ( h 2 ) .  

The Weyl quantisation is given by 

1 
ddQ ddPa(Q,  P )  exp[(-i /h)(Q. q*+P.p*)] (Al . l )  

where a(Q, P )  is the Fourier transform of A(q,p) 
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Consider the effect of applying an infinitesimal canonical transformation of A( q, p ) ,  
generated by a Hamiltonian G(q, p ) ,  acting for a time 6t 

(Al .3)  

where {A, B }  is the Poisson bracket of A and B. The correspo2ding quantum 
mechanical transformation is a unitary transformation generated by G 

A'(q, p )  = A(q, P) +{A, G}Sf + o(6t2)  

A"=e A i&t i t /hA e - i&sr /h  

= A + (i /  h ) [ A ,  6161 + o(6t2)  (A1.4) 

where 6 is obtained from 6(q, p )  using the Weyl quantisation. Compare A" with the 
operator A' obtained by quantising A'(q,p). The two are only equal if (i/h)[A, B] = 
{A, B }  in the WeylAqu3ntisation. In  general this is not true: Moyal (1949) showed 
that, if = ( i /h )  [A ,  B ] ,  the corresponding classical function is 

PI = P2= P 

= { A ,  B}+o(h ' ) .  (A1.5) 

In general, therefore, A' and Art differ by o( h 2 ) .  If H is the Hamiltonian function of 
a given classical system, we have seen that the results of applying the Weyl quantisation 
depend on the choice of phase space coordinates, and the operators fi differ by o( h 2 ) .  
This perturbation representing the ambiguity of quantisation is arbitrary, apart from 
the constraint that it should have a classical limit. 

If the Hamiltonian has time reversal symmetry, it is appropriate to impose another 
constraint on the perturbation. A classical Hamiltonian has time reversal symmetry if 
there exist coordinates (q,  p )  in which H ( q ,  p )  = H ( q ,  - p ) .  If the Hamiltonian is 
quantised by applying the Weyl rule in these coordinates, the resulting quantum 
Hamiltonian fi also has time reversal symmetry, and this is usually the physically 
correct quantisation. In some coordinates, however, the Weyl rule quantisation will 
not have exact time reversal symmetry, and this alters the spectral statistics. Since we 
are only interested in physically reasonable quantisations, which have time reversal 
symmetry, the perturbation should be constrained to preserve this symmetry. 

Appendix 2 

The motion of the energy level gas can be Fourier analysed, and the amplitudes of 
the modes used as dynamical variables. For small amplitude disturbances modes with 
wavelengths large compared with the mean level separation behave as independent 
harmonic oscillators, driven by a random force. This appendix will analyse the motion 
of these long-wavelength modes in detail. 

Let E :  be the position of the nth energy level which would be predicted by applying 
the Weyl rule (3.10) for the density of states, without any periodic orbit corrections. 
The displacement of the nth energy level 

(A2.1) X (  E , )  = E ,  - E O ,  
is related to the corrections An  to the density of states by 

An(E)=n(E) -n , (E)=-n , (E)  dX(E) /dE.  (A2.2) 
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The displacement can be Fourier analysed 

X ( E ) =  d r % ( r )  exp(iEr/h).  (A2.3) J 
For small amplitude corrections An, the long-wavelength modes with r / h  << no obey 
linear, translationally invariant equations of motion and therefore behave indepen- 
dently. Let us analyse the motion of a single mode with frequency r and amplitude x7: 

X(E)=Rex,exp( iEr /h) .  (A2.4) 

First, the viscous restoring force on the mode will be calculated. This force F is 
defined by 

(A2.5) 

where r is the fictitious time variable, and U the viscosity. Then the diffusion constant 
0, of the mode will be calculated; this is defined by 

(ISx7I2) = mr (A2.6) 

FT (sxT)=--sr  
U 

where ax7 is the drift in xI in a short time 6r. 
The force on a single particle is (from (2.12)) 

F , = F ( E , ) = K u  -=.U[ 1 dE- n(E) 
m t n  --a3 E n - E  

so that, using (A2.2) 

1 dX(E’)  
v(sx(E))=F(E)Sr=-KunoST dE’--. 

--oc E - E ’  dE’  

(A2.7) 

(A2.8) 

Now substitute (A2.4) into (A2.8) 

exp(i E’r/ h )  6r 
1 

dE’- 
E -E’  Re( Sx,) exp( i Er/ h ) 

U 

) du 

(A2.9) 

so that 

Note that this restoring force is proportional to the amplitude xI of the mode. 
Now consider the diffusive behaviour of the mode. The diffusive displacement 

SX(En) of the nth energy level in time ST is equal to the matix element A,,,,. The 
diffusive motion is therefore described by the sum f( E)  introduced in Q 3 

f(E 1 = C A n n S e ( E  - En 1 
n 

=E SX(E,)G,(E - E n ) .  
n 

(A2.11) 
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The sum rule (3.20) shows that SX(E) is the sum of a discrete set of modes correspond- 
ing to the periodic orbits 

( A2.12) 

where axJ is the amplitude of the diffusive motion of frequency r,. Modes with 
frequencies which do not correspond to periodic orbits are not driven by the Brownian 
motion, and (A2.10) shows that their amplitude decays to zero. Comparing (A2.11) 
and (A.2.12) with (3.20) we have, taking the limit E + 0 

f(€) = E  ‘XI E exp(iEflrJ/ h ,  - E R )  

1 R 

= no C SX, exp(iEr,/ h )  

= C aJA, exp(ia:/ h )  exp(iEr,/ h )  

J 

J 

where aj = ay + Erj, so that 

Using this result and equations (3.9) (3.28) and (2.5), we find 

(IM = a;(A;)/n: 

= 27rhajo2/ nor, 

2ThK CY’ 
2 ar -- - 

no ?I 

so that the diffusion constant for the mode, DJ, is given by 

( A2.13) 

(A2.14) 

(A2.15) 

( A2.16) 

These results can also be expressed in terms of the amplitudes aJ of the periodic density 
fluctuations, instead of those of the displacement modes. Using (A2.2), the relationship 
between these coordinates is 

= (inoTJ/ h)X,. (A2.17) 

In terms of the aj coordinates, the relaxation and diffusion equations (A2.10) and 
(A2.16) become 

 CY,) = -(mn0r,/h)aJ8r ( A2.18) 

and 
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